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Background: Fire and explosion in process industries can have catastrophic consequences. 
The frequency of these accidents has led safety experts to underscore the importance of 
conducting thorough risk analysis studies to implement effective control measures.

Materials and Methods: A tank gas leak was initially selected as a scenario for probable 
explosion risk assessment. The bowtie technique was utilized to analyze the potential causes 
and consequences of the selected incident. A fuzzy logic approach was used to quantify the 
probability of essential events, and the Bayesian network (BN) was employed for dynamic 
risk analysis.

Results: Using the bowtie method, 24 fundamental causes were identified for tank gas leaks 
(main scenario). Moreover, 4 safety barriers against the prevention of the selected scenario 
were identified, and evaluation of the success and failure of these safety barriers led to the 
identification of 5 potential consequences. According to the BN and fuzzy analysis, the 
inappropriate installation was the most influential event, with a near miss identified as the most 
likely consequence of the central event. 

Conclusion: The results demonstrate that applying fuzzy logic and BNs could solve the 
uncertainty and static nature of traditional quantitative risk analysis studies.
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Introduction

rocess industries, characterized by high 
equipment density, hazardous materials, 
a large workforce, process complexity, 
and significant potential for accidents and 
catastrophic consequences, are classified 
as complex systems [1]. In the process in-
dustries, human factors have been identi-

fied as one of the most common causes of catastrophic 
accidents [2]. The reason for this conclusion can be the 
large number of employees in these industries [1, 2]. 
Additionally, the substantial quantities of flammable hy-
drocarbons typically stored in these industries amplify 
the risk of catastrophic events with far-reaching conse-
quences: Financial, life-threatening, and environmental 
[2, 3]. In the meantime, fires and explosions can cause 
significant damage [4, 5]. In the recent fire and explo-
sion catastrophic accidents in Texas Refinery in March 
2005, 15 people were killed, 180 people were injured, 
and a financial loss of 1.5 billion USD was left [6]. In the 
horrible explosion in Toronto Propane storage facilities 
in 2008, 2 people were killed, and thousands of people 
were evacuated. Moreover, in the horrible fire and ex-
plosion in the British Petroleum Deepwater Horizon 
sea platform due to oil leakage in 2010, 11 people were 
killed, and financial and environmental losses of 36.9 
billion USD were made [6].

These accidents prompted safety experts to prioritize 
upgrading safety systems and conducting risk-based 
studies to implement appropriate control measures. Giv-
en the significant losses resulting from numerous fire 
and explosion accidents in process industries, establish-
ing a decision-making standard and prioritizing hazards 
has become necessary. Consequently, decision-making 
and management now rely on risk assessment [2, 7].

Risk analysis serves as a crucial tool for formulating 
accident prevention strategies and practical risk mitiga-
tion measures within complex systems. Simultaneously, 
its primary objective is to yield actionable insights to in-
form accident prevention efforts or mitigate the severity 
of accident consequences [8]. 

Various methods are employed to identify and evaluate 
risks. The choice of an appropriate approach hinges on 
factors such as available data, industry context, desired 
outcomes, financial limitations, and time constraints 
[9]. In process industries, traditional risk assessment 
methods include fault tree analysis (FTA), event tree 
analysis (ETA), and bowtie technique [10-12]. These 
approaches depend on imperfect, non-specific data, 

which can introduce uncertainty into the results due to 
their lack of relevance to the specific plant under study 
and its outdated nature [13]. Consequently, discovering 
a technique to minimize the uncertainty associated with 
the prior failure rate of fundamental events holds great 
importance. Fuzzy logic is suggested to reduce uncer-
tainty in estimating the probability of basic event occur-
rences. Numerous studies have demonstrated that the 
fuzzy approach can be instrumental when dealing with 
events lacking sufficient data for calculating occurrence 
probabilities in their databases [14, 15]. Traditional risk 
assessment methods often grapple with the challenge of 
staticity. Consequently, they struggle to effectively ana-
lyze the risks associated with dynamic systems [16-18]. 
In process industries, the Bayesian network (BN) serves 
as an excellent tool for conducting quantitative analyses 
[17]. A BN provides a probabilistic approach to handling 
uncertainty and can mitigate the limitations of traditional 
methods. It considers conditional dependencies, com-
mon defects, and various modes of basic events during 
the risk assessment process. One of the key benefits of 
BNs lies in their capacity to update probabilities, making 
it an excellent approach for assessing risk in dynamic 
systems [19, 20].

The primary objective of this study is to conduct an 
explosion risk analysis of a tank employed in an indus-
trial process. This study uses a combination of tools: 
The bowtie diagram is used for analyzing the causes and 
consequences of a specific scenario, an approach using 
fuzzy logic to assess the likelihood of essential events, 
and BNs are used to discern the nature and patterns of 
connections among the contributing factors behind cata-
strophic events.

Materials and Methods

The current cross-sectional study investigated the pro-
cess industry. The gas storage tank under study was cho-
sen due to its historical records of past events and cru-
cial role in maintaining normal process operations. This 
study conducted a probabilistic risk assessment of gas 
storage tank, gas leakage, fire, and explosion using the 
Bayesian tree (BT) model and Fuzzy-BN (FBN). The 
study steps were as follows.

Bowtie technique 

The bowtie analysis is a graphical method that illus-
trates the complete sequence of events leading to an ac-
cident. It begins by identifying the causes of the accident 
and traces them through to their potential consequences. 

P
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BT combines FTA and ETA to provide a comprehensive 
view of the risk [21, 22].

Investigating the primary factors behind the chosen 
scenario (the top event) involved applying the FTA 
method. This structured and hierarchical method illus-
trates how an undesirable accident can arise by linking 
intermediate and basic events. In FTA, the undesired ac-
cident is typically identified as the top event. This ap-
proach illustrates the relationships between events and 
their causes through logical ‘AND’ and ‘OR’ gateways 
[23, 24]. The ETA approach was employed to assess 
potential consequences that might arise in the event of 
a top-event incident and the failure of each safety bar-
rier. At each stage of the event tree, the final implications 
due to the occurrence of the top event are determined by 
creating two branches of success and failure related to 
safety [25]. This study employed a combination of direct 
observation, expert interviews, and document and opera-
tional map review.

Fuzzy approach

In most risk analysis studies, the probability of basic 
events occurring is extracted from the defect rate of 
the events databases. This information may not be up-
to-date on the desired event. Also, the defect rate of the 
desired event is often not accurately found, and similar 
event data should be used. This condition causes consid-
erable uncertainty in data and results [26, 27]. In this re-
search, fuzzy logic is applied to mitigate the uncertainty 
associated with the probability of essential events occur-
ring in the developed FTA model. There are five steps 
for calculating the probability of failure for each crucial 
event. These steps begin with selecting a team of experts 
and end with the probability estimate. Probability esti-
mation is often achieved by applying the trapezoidal and 
Onisawa formulas.

Step 1: Expert selection

The expert’s opinion is used when there is not enough 
information. In this study, an expert is someone who has 
complete information about the system and is familiar 

Table 1. Weighting criteria of different experts

Constitution Classify Score

Job title

Operator 1

Technician 2

Engineer 3

Manager, factory inspector 4

Chief engineer, director 5

Years of related experience

≤ 5 1

6 to 9 2

10 to 19 3

20 to 29 4

≥ 30 year 5

Educational degree

High school 1

Higher national diploma 2

BSc 3

MSc 4

PhD 5
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with FTA and ETA methods. Five experts were appoint-
ed in this study. 

Step 2: Weighing the experts

Knowing that the experts have different criteria such 
as job title, education, years of related experience, etc. 
a relative weighting factor was determined based on the 
Likert score scale to apply the probability of basic events 
occurrence (Table 1).

Referring to Table 1, the relative weighting factor for 
each expert consists of the sum of the Likert scores 
gained by each expert divided by the sum of the scores 
gained by all experts [28, 29].

Step 3: Quantification

Seven language terms and trapezoidal functions (Table 
2) were used to quantify experts’ opinions on essential 
events. Chen and Hwang’s method was employed to 
quantify experts’ opinions [30].

Then, experts’ opinions were integrated based on the 
study conducted by Clemen and Winkler [31] and using 
fuzzy number theory and Equation 1:

1.	

5 
 

Medium (0.3, 0.5, 0.5, 0.6) 

Rather high (0.5, 0.6, 0.7, 0.8) 

High (0.7, 0.8, 0.8, 0.9) 

Very high (0.8, 0.9, 0.9, 1) 
 
 
Then, experts' opinions were integrated based on the study conducted by Clemen and Winkler (31) 
and using fuzzy number theory and Equation 1: 
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Although fuzzy theory can significantly reduce uncer-
tainty, it cannot perform deductive reasoning (probabil-
ity update) in the structure of the used fuzzy methods, 
such as fuzzy FTA and fuzzy BT model [35]. This study 
used the BN’s logic to overcome this limitation.

Table 2. Qualitative linguistic terms and fuzzy numbers

Probability of Occurrence According to Qualitative Terms Fuzzy Numbers

Very low (0, 0.1, 0.1, 0.2)

Low (0.1, 0.2, 0.2, 0.3)

Rather low (0.2, 0.3, 0.4, 0.5)

Medium (0.3, 0.5, 0.5, 0.6)

Rather high (0.5, 0.6, 0.7, 0.8)

High (0.7, 0.8, 0.8, 0.9)

Very high (0.8, 0.9, 0.9, 1)
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BN

After constructing the scenario using the BT model and 
assessing the probabilities of essential events and safety 
barriers through fuzzy logic, the resulting model was 
migrated to the BN framework to address its shortcom-
ings and limitations. The transfer algorithm (mapping) 
from the BT model to the BN was developed based on 
research conducted by Khakzad et al [17]. A Bayesian 
BT model was developed and analyzed using GeNIe 
software for this study. Figure 1 illustrates the algorithm 
for transferring data BT to the BN. The basic events, 
intermediate events, central events, safety barriers, and 
consequences in the BT model are respectively mapped 
to root nodes, intermediate nodes, central nodes, safety 
barrier nodes, and consequence nodes in the BN model.

To quantify the model, fuzzy probabilities of essen-
tial events were used as root node probabilities. In BN 
models, conditional probability distribution tables are 
employed to estimate the probability of intermediate 
events. The probability of an intermediate node is cal-
culated based on the conditional dependencies between 
the root nodes and the probabilistic conditional relations 
for all possible states of the node variables. The probabil-
ity of the central node was determined using the same 
method. Equation 5 was applied to the BN to calculate 
the joint probability distribution of the set of variables U 
= (x1, ..., xn).

5.	

7 
 

 
 

P (U) = ∏ (P (Ai |Pa (Ai))�
���

  
 
, where Pa (Ai) is the parent set of Ai in BN, and P (U) represents the properties of the BN (17, 
36). 
The most effective basic events were identified after creating a qualitative and quantitative model 
for the selected scenario using probability update features (nodes and consequences) and 
conducting a sensitivity analysis. In diagnostic analysis, BNs employ Bayes' theorem to update 
prior probabilities based on new observations from a distinct set of variables known as evidence 
(often denoted as 'E'). The probability distribution can be computed using various inference 
algorithms, including connection tree and variable elimination, grounded in Bayes' theorem 
(Equation 6). 
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P (U | E)

P (E)
=  

P (U | E)
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Rate of Variation (RoV) Approach 
The rate of variation is used to select the most effective essential events and minimal cut sets 
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RoV(X�) =  � (��)� � (��)  
� (��) 
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∏ θ (X�) �����
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Results

Drawing the BT diagram

The BT diagram of the gas storage tank gas leakage 
scenario is presented in Figure 2, where the FTA is lo-
cated on the left side, and the ETA is on the right.

The fault tree associated with the gas storage tank gas 
leak (top event) indicates that tank performance and 
plumbing system failure were identified as the main 
intermediate causes. These causes were categorized as 

intermediate and basic events. The symbols, descrip-
tions, and probabilities of the basic events are presented 
in Table 3. 

The event tree section was drawn considering four 
safety barriers: Immediate ignition barrier, emergency 
stop pushes button, delay ignition barrier, and space 
confinement, to sequence the events after the top event 
occurrence. The first and second columns of Table 4 
show the symbols, descriptions, and defect probabilities 
of safety barriers. Considering the performance of the 
safety barriers, either failure or proper and expected op-
eration, the gas storage tank leakage scenario led to five 
ultimate consequences, including flash fire, jet fire, va-
por cloud explosion, release of materials, and near miss.

The probability of delayed ignition rises with the ex-
pansion of the gas vapor cloud and, consequently, the 
volume of the released gas. Given that the emergency 
stop push button (ESPB) failure typically results in a 
larger gas release, the probability of delayed ignition is 
correspondingly higher (Table 4).

Table 3. Symbols, descriptions, and probabilities of basic events (Xi)

Symbol Description Probability Symbol Description Probability

X01 PRV failure 5.47×10-3 X13 Unusual operation 4.03×10-2

X02 PSV failure 5.62×10-3 X14
Misunderstanding of acoustic 

noise due to the increased 
pressure inside the tank

5.99×10-3

X03 Pressure switch 6.29×10-3 X15 Outlet valve defect 8.14×10-4

X04 Pressure transmitter 5.23×10-3 X16 Check valve failure 9.53×10-4

X05 Pressure indicator 7.10×10-3 X17 Increasing the gas pressure 
inside the tank compartment 6.08×10-3

X06 Shut-off valve perfor-
mance failure 5.8×10-2 X18 Lack of proper and timely 

repair 9.72×10-2

X07 Temperature switch 
fault 3.06×10-3 X19 Inappropriate connections 5.23×10-3

X08 Temperature trans-
mitter failure 2.36×10-3 X20 Inappropriate installation 8×10-4

X09 Normal thermometer 
performance failure 3.09×10-4 X21 Inappropriate filtering 8.35×10-3

X10
Lack of dissipation 
by tubes and cartel 

enclosure
4.3×10-3 X22 Separators failure 6.6×10-3

X11 Cooling systems 
failure 3.62×10-2 X23 Transmission system failure 

(external coating) 7.77×10-3

X12 Valves failure 2.23×10-3 X24 Cathode cells failure 9.82×10-3

PRV: Pressure relief valve; PSV: Pressure safety valve.
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Calculating fuzzy probabilities for basic events 
and safety barriers

At the outset, a panel of five qualified experts, a chief 
engineer, a manager, a process engineer, an operational 
technician, and an operator, was chosen to assess the 
probability of basic event occurrences. Based on the 
established criteria for scoring the weight of experts, as 
outlined in Table 1, the weight of each expert involved in 
the study was determined, and the results are presented 
in Table 5.

The linguistic terms in Table 2 were used to gather ex-
pert opinions on the probability of essential events and 
safety barriers failing to prevent the scenario. Moreover, 
the experts’ views were integrated using Equation 1, 
and then the experts’ opinions were subjected to a de-
fuzzy operation. The fuzzy probability score calculated 
the number obtained by de-fuzzing each basic event. Fi-
nally, the probabilistic numbers (de-fuzzing) were con-
verted into probability values by Equations 3 and 4. The 
calculation was applied to all 24 basic events, resulting 
in the identification of the tank gas leak scenario and the 

Figure 2. Modeling of the gas storage tank gas leakage scenario by the BT model

Eskandari T & Mohammadfam. Fuzzy Bayesian Network for Explosion Risk Analysis. HDQ. 2025; 10(3):193-206.

April 2025, Volume 10, Number 3



200

Table 4. Symbols, descriptions, and defects probabilities of safety barriers

Symbol Description Probability

IIB Immediate ignition barrier 8.76×10-3

ESPB Emergency stop push button 9.53×10-3

DIB Delay ignition barrier (when ESDm worked) 3.32×10-2

DIB Delay ignition barrier (when ESDm failed) 6.41×10-2

SC Space confinment 4.51×10-3

Table 5. Determining the weight of the experts participated in this study

Expert Job Title Years of Related Experience Educational Degree Weight

Expert 1 5 3 4 0.279

Expert 2 4 3 3 0.232

Expert 3 3 2 3 0.186

Expert 4 2 4 1 0.162

Expert 5 1 4 1 0.139

 Table 6. Symbols, descriptions, and probabilities of the intermediate events (Yi)

Top Event and Interme-
diate Events Description Prior Probability 

(FBN)
Posterior Probability 

(FBN)

Top event Tank gas leakage 3.19×10-2 1

Y01 Tank performance failure 1.13×10-2 3.53×10-1

Y02 Plumbing system failure 2.09×10-2 6.53×10-1

Y03 High-pressure gas 1.18×10-2 4.24×10-1

Y04 Control tools failure 1.33×10-2 3.55×10-1

Y05 Corrosion 7.63×10-5 2.38×10-3

Y06 Pressure regulators’ performance failure 1.9×10-2 2.02×10-2

Y07 Temperature increase in the tank compartment 4.58×10-2 4.87×10-2

Y08 The tank inlet valve is not closed 4.81×10-2 5.12×10-2

Y09 A sudden burst of valves 5.9×10-4 2.53×10-3

Y10 Heat exchanger performance failure 4.03×10-2 4.29×10-2

Y11 Operator error 4.6×10-2 4.89×10-2

FBN: Fuzzy Bayesian network.
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safety barriers relevant to preventing its occurrence. Fi-
nally, the fuzzy logic approach was used to determine 
the probability of failure for each basic event. The fuzzy 
logic outcomes are presented in the third column of Ta-
bles 6 and 7.

BN

Figure 3 displays a BN model of the tank gas leakage 
scenario. The probability values for essential events, 
safety barriers, and intermediate events, as determined 
through fuzzy logic, were integrated into the model. 
Subsequently, the developed FBN served as the founda-
tion for deriving the probability values of intermediate 
events, the top event, and its associated consequences 
(Tables 6 and 7).

To update the presented model, the central node rep-
resenting the tank gas leak was designated as evidence, 
and the prior probabilities of all basic events, intermedi-
ate events, and consequences were accordingly updated. 

The outcomes of this model revision are presented in the 
fourth column of Tables 6 and 7.

Sensitivity analysis

As shown in Figure 4, X20 (inappropriate installa-
tion), X19 (inappropriate connections), and X02 (pres-
sure safety valve [PSV] failure) have the highest RoV 
of probability, indicating that the occurrence of the top 
event (gas storage tank gas leak) is most strongly influ-
enced by the critical essential events. Figure 5 shows the 
results of ranking the gas storage tank scenario for MCSs 
according to the RoV. As illustrated, CS19, CS18, and 
CS11 are determined to be the most critical MCSs.

Discussion

The primary objective of this research is to solve the 
problems of insufficient reliable and accurate data, stat-
icity, and incompatibility with dynamic accidents in risk 

Figure 3. Dynamic modeling of the tank gas leakage scenario by the BN model
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Table 7. Symbols, descriptions, and probabilities of the gas storage tank gas leakage consequences

Symbol Description
FBN

Prior Probability Posterior Probability 

C1 Jet fire 2.80×10-4 8.76×10-3

C2 Near miss 3.14×10-2 9.81×10-1

C3 High material release 2.82×10-4 8.84×10-3

C4 Flash fire 1.92×10-5 6.02×10-4

C5 Vapor cloud explosion (VCE) 8.73×10-8 2.73×10-6

FBN: Fuzzy Bayesian network.
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assessment studies. For this purpose, a functional frame-
work based on fuzzy logic and the BN was presented to 
resolve the challenges.

Among the risk analysis techniques for accidents, the 
BT model has been widely validated as an effective and 
dependable approach [16]. The model has been com-
monly used in various safety and risk analysis fields, 
including process safety analysis, accident risk assess-
ment, risk management, and the implementation of safe-
ty barriers [38, 39]. According to the results obtained by 
implementing this model in the investigated scenario, it 
was determined that 24 essential events and 11 interme-
diate events are responsible for the gas storage tank gas 
leakage. The present study recognized immediate and 
delayed ignition systems, emergency stop push buttons, 
and space confinement as safety barriers safeguarding 
against gas storage tank gas leakage.

BT method provides a strong model for delineating the 
initial causes that precipitate the main event (scenario) 
occurrence and for predicting the ultimate consequences 
of the scenario’s realization [40]. However, one of the 
shortcomings of the BT methodology is the use of gen-
eral defective data in databases, which consequently re-
sults in uncertainty within the results, attributable to the 
lack of specificity and the outdated nature of the data 
about the studied unit [13, 41]. To overcome this limita-
tion, fuzzy logic was used to calculate the probability of 
the occurrence of basic events and reduce uncertainty in 
the results. 

Jozi et al., Solanzadeh et al., and Mirzaei Aliabadi re-
ported the problem of insufficient data on defects and 
lack of certainty in the process industry in their studies 
[2, 25, 42]. The existence of these problems justifies the 
use of fuzzy logic. Applying fuzzy logic in the FTA and 
the ETA can simplify the assessment and increase the 
accuracy [43-45]. Recent studies show that the accu-
racy of predicting the probability of fundamental event 
failures using fuzzy numbers from different experts can 
vary in diverse environments. Accurately selecting the 
fuzzy number to represent the basic event is crucial. This 
approach ultimately decreases uncertainty and enhances 
the system’s reliability [46]. Fuzzy logic represents the 
parameters of a problem (occurrence rate of essential 
events, the top event of an accident scenario, etc.) as 
fuzzy numbers in a range instead of limiting them to a 
number. In this sense, fuzzy logic offers a precise and 
systematic framework for representing and reasoning 
about complex, uncertain phenomena in reality [27, 47]. 
Additional significant constraints of the BT methodolo-
gy include its static nature and inability to accommodate 

dynamic accident scenarios. This condition has evolved 
into a critical concern within the field of quantitative risk 
assessment in process industries [1, 16]. Although fuzzy 
theory can reduce uncertainty, it can not perform deduc-
tive reasoning (probability update) in the structure of 
fuzzy methods, such as fuzzy fault tree, fuzzy BT mode, 
and so on [35]. In this study, the BN logic was used to 
overcome this problem. The BN was also used in dy-
namic quantitative risk analysis. In the BN, after receiv-
ing new information such as pseudo-accident statistics, 
accidents, etc. the probability of basic events is updated; 
in other words, safety analysis turns into a dynamic 
mode [18, 20]. In their studies, Wu et al., Rezaee et al., 
and Zhang et al. showed the significance of employing 
the FBN in dynamic assessment and control of process 
industries to overcome the problems of conventional risk 
analysis methods and reduce their uncertainty [48-50]. 
The BN model allows for inductive reasoning, which 
estimates the probability of a scenario’s realization and 
consequences [51]. Inductive reasoning using the BN 
method indicates that the gas leakage from gas storage 
tank most likely results in the top event occurring with a 
probability of 3.19×10-2. The subsequent consequences, 
a near miss and a high material release have probabilities 
of 3.14×10-2 and 2.82×10-4, respectively. Unlike tradi-
tional risk analysis methods like BT, the BN method ac-
counts for the conditional dependence between events of 
defect type and common causes [52]. This is illustrated 
in Figure 3 by the dependency between Y02 and Y03, 
which share common causes X01 and X02. 

The BN’s deductive inference capability is crucial for 
dynamic risk analysis. Deductive inference enables the 
revision of basic event probabilities, thereby reducing 
uncertainty within the model and its resulting outputs 
[53, 54]. Revising the probabilities of essential events 
and their corresponding consequences can identify the 
most critical (most influential) essential events that sig-
nificantly impact the occurrence of the top event [17]. 

The revised probability of each basic event (Xi) is 
determined by assuming the probability of basic event 
(Xi) occurrence given the top event (gas storage tank gas 
leakage), represented as P(Xi | gas storage tank gas leak-
age). In this investigation, X21 (inappropriate filtering) 
was determined to be the most influential factor in the 
occurrence of the analyzed scenario. Furthermore, after 
updating the probability of the top event, C2 remains 
the most likely consequence. This is primarily attributed 
to the effective functioning of the emergency stop push 
button during gas leaks from the storage tank. C1 (jet 
fire), with a probability of 8.76×10-4, is the second most 
probable consequence due to the potential for immediate 
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ignition in the surrounding area. Consequently, imple-
menting barriers in the gas storage tank system can sub-
stantially mitigate the impacts of gas leaks.

The FBN, a fusion of fuzzy theory and BNs, leverages 
fuzzy numbers to represent basic event probabilities and 
safety barrier effectiveness, thereby mitigating uncer-
tainty [34, 35]. Moreover, it benefits from both deductive 
and inductive inference. Consequently, the BN emerges 
as a robust and efficient tool for addressing uncertainty 
in risk analysis studies [27].

Wang et al. concluded that the use of updated values 
for the probability of essential events as well as the fi-
nal consequences for determining the identification of 
the most influential essential events and probable out-
comes could lead to errors in selecting these elements. 
They used the RoV of probabilities to solve this problem 
[37]. In the present study, based on Figure 4 (RoV of the 
essential events), X20 (inappropriate installation), X19 
(inappropriate connections), and X02 (PSV failure) were 
determined to be the most influential essential events 
in the realization of the top event. Moreover, Figure 5 
shows that the most influential MCSs variables coincide 
with the basic events identified as the most critical in 
Figure 4.

Conclusion

The present study offers a thorough and dynamic 
quantitative risk analysis of explosion and fire hazards 
in process industries, utilizing a combination of fuzzy 
logic and BNs. The gas storage tank system was selected 
as a study unit, considering the history of previous ac-
cidents and its critical role in the normal operation of 
the process. Therefore, the probabilistic risk analysis 
considered gas leakage from the gas storage tank (the 
main scenario) and its fire and explosion. The analysis 
of the scenario’s cause-consequence was performed us-
ing the BT diagram, basic events, intermediate events, 
safety barriers, and identification of the probable con-
sequences of gas leakage from a gas storage tank. The 
fuzzy logic technique was used to determine the prob-
ability of basic events in the BT model and reduce their 
uncertainty probability. To refine the probability analysis 
and uncover the interdependencies among the contribut-
ing factors to the critical event, the BN was employed 
to represent the fault tree diagram. This analysis deter-
mined that inappropriate installation and near-miss inci-
dents were the primary causes and consequences of gas 
storage tank gas leakage. The RoV analysis identifies the 
most influential basic events in the top event occurrence 
with high sensitivity.
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