1. Zohrevandi BAP, Monsef Kasmaee V, Tajik H, Ashouri A, Ebrahimi H. [Epidemiology of motor cycle accidents in Rasht, 2011- 2012 (Persian)]. Iranian Journal of Forensic Medicine. 2014; 20(4):169-70.
2. Bhalla K, Harrison JE. GBD- 2010 overestimates deaths from road injuries in OECD countries: New methods perform poorly. International Journal of Epidemiology. 2015; 44(5):1648-56. [DOI:10.1093/ije/dyv019] [PMID] [
DOI:10.1093/ije/dyv019]
3. World Health Organization. Global status report on road safety: Time for action. Geneva: World Health Organization; 2016.
4. Tavakkoli L, Khanjani N. [The pattern of road crashes emphasizing the factors involved in their occurrence in Kerman city 2012-2015. Journal of Safty Promotion Injury Prevention. 2012; 4(2):101-8.
5. Peden SR, Sleet D, Mohan D, Hyder AA, Jarawan E, Mathers C. World report on road traffic injury prevention. Geneva: World Health Organization; 2004.
6. Chang CJ. Analysis of driver injury severity in truck-involved accidents using a non-parametric classification tree model. Safety Science. 2013; 51(1):17-22. [DOI:10.1016/j.ssci.2012.06.017] [
DOI:10.1016/j.ssci.2012.06.017]
7. Soni KS, Parmar KS, Kaskaoutis DG. Statistical analysis of aerosols over the gangetichimalayan region using ARIMA model based on long-term MODIS observations. Atmospheric Research. 2014; 149:174-92. [DOI:10.1016/j.atmosres.2014.05.025] [
DOI:10.1016/j.atmosres.2014.05.025]
8. Sahebi S, Mahpour A, Norouz A. [The prediction model for the severity of pedestrian traffic accidents in the out-of-town ways (Persian)]. Journal of Transportation Engineering. 2016; 6(4):581-92.
9. Kazemi M, Safarzadeh M, Movagari H, Fallah Zavareh M. [Estimated cost of deducted traffic accidents in Iran (Persian)]. Journal of Transportation Engineering. 2016; 6(4):627-40.
10. Barba L, Rodríguez N, Montt C. Smoothing strategies combined with ARIMA and neural networks to improve the forecasting of traffic accidents. The Scientific World Journal. 2014; 20(14):127-42. [DOI:10.1155/2014/152375] [
DOI:10.1155/2014/152375]
11. Razzaghi BA, Baneshi MR, Zolala F. [Assessment of trend and seasonality in road accident data: An Iranian case study (Persian)]. The Scientific World Journal. 2013; 1(1):51-5. [DOI:10.15171/ijhpm.2013.08] [PMID] [PMCID] [
DOI:10.15171/ijhpm.2013.08]
12. Zhang ZS, Wang P, Qin Y, Wang H. Forecasting of particulate matter time series using wavelet analysis and wavelet-ARMA/ARIMA model in Taiyuan. Journal of the Air & Waste Management Association. 2017; 67(7):776-88. [DOI:10.1080/10962247.2017.1292968] [
DOI:10.1080/10962247.2017.1292968]
13. Li Q, Guo NN, Han ZY, Zhang YB, Qi SX, Xu YG, et al. Application of an autoregressive integrated moving average model for predicting the incidence of hemorrhagic fever with renal syndrome. The American Journal of Tropical Medicine and Hygiene. 2012; 87(2):364-70. [DOI:10.4269/ajtmh.2012.11-0472] [PMID] [PMCID] [
DOI:10.4269/ajtmh.2012.11-0472]
14. Purwanto EC, Logeswaran R. An enhanced hybrid method for time series prediction using linear and neural network models. Applied Intelligence. 2012; 37(4):511-9. [DOI:10.1007/s10489-012-0344-1] [
DOI:10.1007/s10489-012-0344-1]
15. Xing W, ZiJun D, Bin SH. Comparison of three models on prediction of incidence of pulmonary tuberculosis in Beijing. Beijing Medical Journal. 2010; 9:14.
16. Naghibi SA, Pourghasemi HR, Dixon B. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental Monitoring and Assessment. 2016; 188(1):44. [DOI:10.1007/s10661-015-5049-6] [PMID] [
DOI:10.1007/s10661-015-5049-6]
17. Wang CH. Predicting tourism demand using fuzzy time series and hybrid grey theory. Tourism Management. 2004; 25(3):367-74. [DOI:10.1016/S0261-5177(03)00132-8] [
DOI:10.1016/S0261-5177(03)00132-8]
18. Trung DQ, Ahn KK. Wave prediction based on a Modeling Grey Model MGM(1,1) for real-time control of wave energy converters in irregular wave. Renewable Energy. 2012; 43:242-55. [DOI:10.1016/j.renene.2011.11.047] [
DOI:10.1016/j.renene.2011.11.047]
19. Xu J, Tan T, Tu M, Qi L. Improvement of grey models by least squares. Expert Systems With Applications. 2011; 38(11):13961-66. [
DOI:10.1016/j.eswa.2011.04.203]
20. Wen YP, Deng Z, Liu K, Zhang Y, Liu L. [Time-series analysis on road traffic injury in China (Chinese)]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2005; 36(6):866-9. [
PMID]
21. Yan-Hong L, Rahim Y, Wei L, Gui-Xiang S, Yu Y, Zhou DD, et al. Field data: A study on trend and prediction of fatal traffic injuries prevalence in Shanghai. Traffic Injury Prevention. 2006; 7(4):403-17. [DOI:10.1080/15389580600943336] [PMID] [
DOI:10.1080/15389580600943336]
22. Omidi AH, Omidi MR. [Forecasting accidents in transportation systems by using Harmonic, Arch, Dynamic and Temporal patterns (case study of traffic accident victims in Khuzestan province) (Persian)]. Rahvar Research Studies. 2017; 20(1):165-91.